
�

Requirements Engineering 4:
Software Requirements Specifications

Steve Easterbrook
9/17/97

�

Outline

Functional Requirements Specifications

Non-Functional Requirements

Qualities of an SRS

IEEE & DOD documentation standards

Concept of Operations Documents

�

Software Requirements Specification

• The SRS is the main output of the Requirements
Engineering Process

• Purpose
ÀCommunicates an understanding of the application domain and the system

(machine) to be developed
ÀContractual
ÀBaseline for evaluating subsequent products
ÀBaseline for change control

• Audience

• Contents

• Structure

Source: Adapted from Loucopoulos & Karakostas, 1995, p9

�

Functional vs. Non-functional

• SRS normally specifies “Functional Requirements”
À fundamental functions of the system
ÀE.g. mapping of inputs to outputs
ÀE.g. control sequencing
ÀE.g. timing of functions
ÀE.g. handling of exceptional situations
ÀE.g. formats of input and output data (and stored data?)
ÀE.g. real world entities and relationships modeled by the system

• plus some “Non-Functional Requirements (NFRs)”
À constraints on the system
ÀE.g. security, safety, availability, usability, performance, portability,…
À constraints from the application domain
ÀE.g. compatibility with (and reuse of) legacy systems

Source: Adapted from Loucopoulos & Karakostas, 1995, p10-12

�

SRS should not include

• Project development plans (cost, staffing, schedules,
methods, tools, etc)
ÀLifetime of SRS is until end of operations phase
ÀLifetime of development plans is much shorter

• Product assurance plans (CM, V&V, test, QA, etc)
ÀDifferent audiences
ÀDifferent lifetimes

• Designs
ÀRequirements and designs have different audiences
ÀAnalysis and design are different areas of expertise (I.e. requirements

analysts shouldn’t do design!)
ÀExcept where application domain constrains the design: e.g. limited

communication between different subsystems for security reasons.

Source: Adapted fromDavis, 1990, p183

�

On the dominance of FRs

• To much detail for stakeholders and analysts
À emphasis on functional SRS forces premature fixing of the system boundary

before really understanding the application domain
À no clear way to distinguish early architectural decisions (mixed in with FRs)

• Obscures other important aspects
À objectives of the system & relationship to enterprise goals
À de-emphasizes the feasibility study
À prior constraints on development (tools, expertise, economics, etc)

• Ignores need for negotiation
ÀNo room for identifying and resolving conflict among stakeholders
ÀMakes it hard to prioritize requirements
ÀMakes it hard to evaluate alternative ways of achieving the organizational

purpose

Source: Adapted from Loucopoulos & Karakostas, 1995, p10

�

And just what is a NFR?

• The distinction between functional and non-functional
requirements is fuzzy
À…and probably not a very helpful distinction to make

• NFRs tend to refer to systemic properties
ÀBut may get allocated to subsystems as design progresses
ÀE.g. Security

• Hence:
ÀWorry not whether you’re specifying functional or non-functional

requirements
ÀBut do make sure that they are all specified behaviorally (I.e. there is some

procedure specified for determining whether they have been met)
ÀRequirements that are specified non-behaviorally are very difficult to

measure.

Source: Adapted from Loucopoulos & Karakostas, 1995, p12, and Weiringa, 1996, p21

�

A complication: procurement
• SRS may be written by procurer

À Is really a call for proposals
ÀMust be general enough to yield a good selection of bids…
À…and specific enough to exclude unreasonable bids

• SRS may be written by the bidders
ÀRepresents a proposal to implement a system to meet the CfP
Àmust be specific enough to demonstrate feasibility and technical competence
À…and general enough to avoid over-commitment

• SRS may be written by the selected developer
À reflects the developer’s understanding of the customers needs
À forms the basis for evaluation of contractual performance

• IEEE Standard recommends SRS jointly developed by
procurer and developer

�

Attributes of the perfect SRS

• Valid (or ‘correct’)
À expresses only actual requirements

• Complete
À Specifies all the things the system

must do
À ...and all the things it must not do!
À Responses to all classes of input
À Structural completeness, and no

TBDs!!

• Consistent
À doesn’t contradict itself (I.e. is

satisfiable)
À Uses all terms consistently
À Note: timing and logic are especially

prone to inconsistency

• Necessary
À doesn’t contain anything that isn’t

“required”

• Unambiguous
À every statement can be read in

exactly one way
À define confusing terms in a glossary

• Verifiable
À a process exists to test satisfaction of

each requirement
À “every requirement is specified

behaviorally”

• Understandable
À by non-computer specialists

Source: Adapted from Davis, 1990, p184-191 and the IEEE-STD-830-1993

��

But a perfect specification is
unattainable...

��

Ambiguity Test

• “The system shall report to the operator all faults that
originate in critical functions or that occur during
execution of a critical sequence and for which there is
no fault recovery response.”

Originate in critical functions F T F T F T F T

Occur during critical seqeunce F F T T F F T T

No fault recovery response F F F F T T T T

Report to operator?

Source: Adapted from Easterbrook & Callahan, 1997.

��

Avoiding ambiguity

• Review natural language specs for ambiguity
À use people with different backgrounds
À include software people, domain specialists and user communities
ÀMust be an independent review (I.e. not by the authors!)

• Use a specification language
ÀE.g. a restricted subset of English
ÀE.g. a semi-formal notation (graphical, tabular, etc)
ÀE.g. a formal specification language (e.g. Z, VDM, SCR, …)

• Exploit redundancy
ÀRestate a requirement to help the reader confirm her understanding
À ...but clearly indicate the redundancy
ÀMay want to use a more formal notation for the re-statement

��

TBDs

• A specification is not complete if it contains TBDs
(“To be determined”)

• However, TBDs may be necessary as a specification
evolves

• Every TBD should be accompanied by:
À the reason for the TBD (I.e. why is the information not yet available)
À an indication of how to resolve the TBD
À an indication of who is responsible for resolving it
À a date by when it should be resolved.

• If you don’t include this when you write the TBD, you’ll
never remember it.

Source: Adapted from Davis, 1990, p190

��

SRS format and style

• Modifiability
Àwell-structured, indexed, cross-referenced, etc.
À redundancy should be avoided or must be clearly marked as such
ÀAn SRS is not modifiable if it is not traceable...

• Traceability
ÀBackwards: each requirement traces to a source (e.g. a requirement in the

system spec; a stakeholder; etc)
À Forwards: each requirement traces to parts of the design that satisfy that

requirement
ÀNote: traceability links are two-way; hence other documents must trace into

the SRS
ÀHence every requirement must have a unique label.

• Useful Annotations
ÀE.g. relative necessity and relative stability

Source: Adapted from Davis, 1990, p192-5

��

Typical Structure (IEEE)

• 1 Introduction
À Purpose
À Scope
À Definitions, acronyms, abbreviations
À Reference documents
À Overview

• 2 Overall Description
À Product perspective
À Product functions
À User characteristics
À Constraints
À Assumptions and Dependencies

• 3 Specific Requirements

• Appendices

• Index

Identifies the product, &
application domain

Describes contents and
structure of the

remainder of the SRS

Describes all external interfaces: system,
user, hardware, software; also operations

and site adaptation, and hardware
constraints

Summary of major
functions

Anything that will limit the developer’s
options (e.g. regulations, reliability,

criticality, hardware limitations,
parallelism, etc)

All the requirements go in here (I.e. this is the
body of the document). IEEE STD provides 8

different templates for this section

Source: Adapted from IEEE-STD-830-1993

��

IEEE STD Section 3 (example)

3.1 External Interface
Requirements

3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communication Interfaces

3.2 Functional Requirements
this section organized by mode, user

class, feature, etc. For example:
3.2.1 Mode 1

3.2.1.1 Functional Requirement 1.1
…

3.2.2 Mode 2
3.2.1.1 Functional Requirement 1.1
…

...
3.2.2 Mode n

...

3.3 Performance Requirements
Remember to state this in measurable

terms!

3.4 Design Constraints
3.4.1 Standards compliance
3.4.2 Hardware limitations
etc.

3.5 Software System Attributes
3.5.1 Reliability
3.5.2 Availability
3.5.3 Security
3.5.4 Maintainability
3.5.5 Portability

3.6 Other Requirements

Source: Adapted from IEEE-STD-830-1993

��

MIL-STD-498

• MIL-STD-498 is the main DOD standard for software
development and documentation
À replaces DOD-STD-2167A and DOD-STD7935A

• Consists of:
À a guidebook,
À a list of process requirements
À 22 Data Items Descriptions (DIDs)

• DIDs are the documents produced during software
development. e.g.
ÀOCD - Operational Concept Description
À SSS - System/Subsystem Specification
À SRS - Software Requirements Specification
À IRS - Interface Requirements Specification
À etc

Source: Adapted from MIL-STD-498

��

System Structure

• MIL-STD-498 uses the following system structure:

System or Segment
(SSS)

System or Segment
(SSS)

System or Segment
(SSS)

CSCI
(SRS)

HWCI
(PIDS)

CSCI
(SRS)

CSCI
(SRS)

HWCI
(PIDS)

Interfaces
(IRS)

CSCI
(SRS)

&6&,� �&RPSXWHU�6RIWZDUH

&RQILJXUDWLRQ�,WHP

+:&,� �+DUGZDUH

&RQILJXUDWLRQ�,WHP

Source: Adapted from MIL-STD-498

��

SRS DID from MIL-STD-498
1 Scope

1.1 Identification
1.2 System Overview
1.3 Document Overview

2 Referenced Documents

3 Requirements
3.1 Required States and Modes
3.2 CSCI Capability Requirements

3.2.x Capability X…
3.3 CSCI External Interface

Requirements
3.3.1 Interface Identification and

diagrams
3.3.x Project Unique Identifier

3.4 CSCI Internal Interface
Requirements

3.5 CSCI Internal Data Requirements
3.6 Adaptation Requirements
3.7 Safety Requirements

3.8 Security and Privacy Requirements
3.9 CSCI Environment Requirements
3.10 Computer Resource Requirements
3.11 Software Quality Factors
3.12 Design and Implementation

Constraints
3.13 Personnel-related Requirements
3.14 Training-related Requirements
3.15 Logistics-related Requirements
3.16 Other Requirements
3.17 Packaging Requirements
3.18 Precedence and criticality of

Requirements

4 Qualification Provisions

5 Requirements Traceability

6 Notes

Appendices
Source: Adapted from MIL-STD-498

��

Overcoming functional bias

• Review (with users, purchasers, etc)
À Should not proceed to development with out it!
ÀBut can turn into a ‘dog and pony show’
ÀUsers and buyers overwhelmed by technical detail

• Draft users manual
ÀHelps show that developer understands users’ needs.
ÀBut hard to keep current, and hard to trace to specifications

• Prototyping
ÀHelps to pin down user requirements
ÀBut may mislead users, and may freeze the design prematurely

• Concept of Operations Document
ÀA bridge between the user needs and the requirements specification

Source: Adapted from Fairley and Thayer, 1997, p73-4

��

Concept Analysis Process

• Analysis of a problem domain and an operational
environment to specify characteristics of a proposed
system
ÀThis is a systems level approach
ÀEmphasizes integrated view of the entire system
À Surfaces and prioritizes differing needs
ÀHelps clarify and resolve conflicts

• The ConOps document
Àwritten in narrative prose in the language of the (users) application domain
ÀNeeds don’t need to be quantified
À Level of detail can be tailored to the specific situation
ÀCan use storyboards, informal diagrams, etc

Source: Adapted from Fairley and Thayer, 1997, p76

��

OCD DID from MIL-STD-498
1 Scope

1.1 Identification
1.2 System Overview
1.3 Document Overview

2 Referenced Documents

3 Current system or situation
3.1 Background, objectives and scope
3.2 Operational Policies and constraints
3.3 Description of current system or

situation
3.4 Users or involved personnel
3.5 Support concept

4 Justification for and nature of
changes

4.1 Justification for change
4.2 Description of needed changes
4.3 Priorities among the changes
4.4 Changes considered but not included
4.5 Assumptions and constraints

5 Concept for a new or modified
system

5.1 Background, objectives and scope
5.2 Operational Policies and constraints
5.3 Description of new or modified

system
5.4 Users / affected personnel
5.5 Support concept

6 Operational Scenarios

7 Summary of Impacts
7.1 Operational Impacts
7.2 Organizational Impacts
7.3 Impacts during development

8 Analysis of the Proposed
System

8.1 Summary of advantages
8.2 Summary of

disadvantages/limitations
8.3 Alternatives and trade-offs

considered
Source: Adapted from MIL-STD-498

��

Next Week

• Requirements Elicitation

• Ethnographic Techniques

• Scenarios (use-cases)

• Formal Inspection exercise (really!)

��

References
• Loucopoulos, P. and Karakostas, V. “System Requirements Engineering”. McGraw Hill,

1995.

• Davis, A. M. “Software Requirements: Analysis and Specification”. Prentice-Hall, 1990.

• Wieringa, R. J. “Requirements Engineering: Frameworks for Understanding”. Wiley,
1996.

• IEEE-STD-830-1993. IEEE Recommended Practice for Software Requirements
Specifications. Reprinted in Thayer, R. H and Dorfman, M. (eds.) “Software
Requirements Engineering, Second Edition”. IEEE Computer Society Press, 1997,
p176-205

• MIL-STD-498. Military Standard for Software Development and Documentation. United
States Department of Defense. 1994

• S. M. Easterbrook and J. Callahan, “Formal Methods for V&V of partial specifications:
An experience report” Third IEEE International Symposium on Requirements
Engineering (RE'97), Annapolis, MD., Jan 5-8, 1997.

• Fairley, R. E. and Thayer, R. H. “The Concept of Operations: The bridge from
operational requirements to technical specifications”. In Thayer, R. H and Dorfman, M.
(eds.) “Software Requirements Engineering, Second Edition”. IEEE Computer Society
Press, 1997, p73-83.

